Искусственный интеллект — термины
ИИ стал универсальным термином для приложений, которые выполняют сложные задачи, которые когда-то требовали участия человека, например, общение с клиентами в Интернете или игра в шахматы. Этот термин часто используется взаимозаменяемо с его подобластями, которые включают машинное обучение (ML) и глубокое обучение.
науки об искусственном интеллекте и имеют свою специфик Например, машинное обучение фокусируется на создании систем, которые обучаются и развиваются путем обработки и анализа данных. Разница состоит в том, что машинное обучение всегда подразумевает использование ИИ, однако ИИ не всегда подразумевает машинное обучение.
Чтобы использовать возможности ИИ с максимальной выгодой для бизнеса, необходимо нанять специалистов по изучению данных. Наука о данных объединяет статистику, информатику и бизнес-знания для извлечения ценности из различных источников данных.
ИИ и разработчики
Разработчики применяют искусственный интеллект, чтобы эффективнее выполнять задачи, которые в ином случае пришлось бы делать вручную, взаимодействовать с заказчиками, выявлять закономерности и решать проблемы. Для начала работы с ИИ разработчикам потребуются математические знания и умение пользоваться алгоритмами.
Если Вы впервые задействуете искусственный интеллект для создания приложений, рекомендуется начинать с малого. Создав относительно простой проект наподобие крестиков-ноликов, Вы освоите основы искусственного интеллекта. Учеба на практике является отличным способом развития любых навыков, и искусственный интеллект здесь не исключение. Успешно выполнив несколько небольших проектов, Вы поймете, что возможности искусственного интеллекта поистине безграничны.
Как технология ИИ может помочь организациям
ИИ дает возможность воспроизводить и улучшать то, как мы воспринимаем окружающий мир и реагируем на него. Это свойство ИИ лежит в основе инноваций. ИИ основан на различных технологиях машинного обучения, которые распознают шаблоны в данных и формируют прогнозы. Он создает прибавочную стоимость для бизнеса благодаря следующим возможностям
- помогает использовать весь потенциал данных;
- составляет надежные прогнозы и автоматизирует сложные задачи.
ИИ на предприятии
Технологии на основе ИИ помогают повысить эффективность и производительность труда за счет автоматизации процессов и задач, которые раньше выполнялись людьми. ИИ также умеет интерпретировать объемы данных, которые не под силу интерпретировать человеку. Это умение может приносить существенные преимущества для бизнеса. Например, Netflix использует машинное обучение для обеспечения уровня персонализации, что помогло компании увеличить свою клиентскую базу более чем на 25 процентов.
Большинство компаний сделали изучение данных своим приоритетом и вкладывают в него значительные средства. Опрос McKinsey 2021 года по ИИ показал, что количество компаний, сообщивших о внедрении ИИ по крайней мере в одной функции, увеличилось до 56 % по сравнению с 50 % годом ранее. Кроме того, 27% респондентов сообщили, что по крайней мере 5% доходов могут быть связаны с искусственным интеллектом, по сравнению с 22% годом ранее.
ИИ предлагает преимущества для всех аспектов и отраслей бизнеса любого масштаба, как общие, так и специализированные
- использование операционных и демографических данных дает возможность прогнозировать объем прибыли от заказчика на протяжении всего периода взаимодействия (ценность цикла обслуживания заказчика);
- оптимизация ценообразования на основе поведения и предпочтений покупателей;
- распознавание образов для анализа рентгеновских снимков и диагностики рака.
Применение ИИ на предприятии
Согласно последнему отчету Harvard Business Review, компании преимущественно используют ИИ в следующих целях
- выявление и предотвращение нарушений безопасности (44 %);
- устранение технических проблем пользователей (41 %);
- сокращение задач по управлению продукцией (34 %);
- оценка внутреннего соответствия нормативам у одобренных поставщиков (34 %).
Почему технологии ИИ стали так популярны?
Три фактора способствуют повсеместному внедрению ИИ.
- Доступность высокопроизводительных вычислительных ресурсов по невысокой цене. Наличие многочисленных вычислительных ресурсов в облаке сделало их доступными для широкой аудитории. Ранее вычислительные системы для ИИ были локальными и обходились чрезмерно дорого.
- Доступность больших объемов данных для обучения. Чтобы научить ИИ делать точные прогнозы, он должен обработать большие объемы данных. Простота маркировки данных и доступное хранение и обработка структурированных и неструктурированных данных позволяют создавать больше алгоритмов и обучать их.
- Конкурентные преимущества ИИ. Все больше компаний узнают о конкурентных преимуществах ИИ для бизнеса и делают внедрение этой технологии своим приоритетом. К примеру, специализированные рекомендации ИИ помогают быстрее принимать более взвешенные решения. Также ИИ предлагает множество средств и возможностей для сокращения затрат и снижения рисков, ускорения вывода продуктов на рынок и т. д.